Lecture on "Analyze population life expectancy based on Big Data "

At 6pm to 7:30pm on January 7, 2021, the lecture of "Analyze population life expectancy based on Big Data" of School of Silicon Valley Artisan of USJ broadcasted live online globally. The life expectancy of the population is a very important indicator that can comprehensively reflect the level of socio-economic development and the level of medical and health services in a region. The lecture of Silicon Valley Artisan analyzes the factors that affect the life expectancy of the population and tries to use Python 3.7 to build a model to predict the life expectancy of the population and explore its changing trends. The following are the main points summarized by Yuting. Please take notes.

Recording Chrome	File	Edit View	story Bookmarks People Tab Window Help	🍫 🌀 🔽 😗 💲 🛄 🤶 🕪 38% 🏝 Thu 6:17	PM Q =
•••	C Deskt	op/167 /intern/	X A 相关性project - Jupyter Noteb X Post Atten	dee-zoom X T	
← → 0		localhost:888	atebooks/Desktop/16/%20/intem/相大性project.pynownug	line J. 2 数组和字符串 - 小 ④ 新浪竞技风暴_新浪网	P ICIP odf
ja III Apps	Linked	uputor		P Logout	
		Jupyter	日天"注project (autosaved)		
	F	ile Edit	aw Insert Cell Kernel Widgets Help	Not Trusted Python 3 O	POF
desi	8	+ % 6	N ↓ H Run ■ C → Code ✓ ☑		i-9.pdf
			<pre>xplained_variance = pca.explained_variance_ratio umulative_explained_variance=np.cumsum(np.round) d.Series(data=cumulative_explained_variance, inclusion)</pre>	<pre>ceplained_variance, decimals=4)) tex=range(1,20))</pre>	POF
		Out[14]:	0.3300 0.5085 0%6271		licChinaCitic Requ204.po
			0.7689 0.8151 0.8506		102-50d1-7f
			0.8790		t project.i
			0 0.9283		:t.ipynb is
			2 0.9634		3-a0d1-7fa4
			4 0.9876		103-a0d1-7f
			5 0.9926 6 0.9956		3-a0d1-7fa4
			7 0.9979		103-a0d1-71
			9 1.0000		3-a0d1-7fa4
			type: float64		f03-a0d1-7f
pa		In [15]	<pre>/ cumulative variance plot plt.rcParams['figure.figsize'] = [8, 5] plt.plot(range(1,20),cumulative_explained_variance)</pre>	ce)	3-a0d1-7fa4 f03-a0d1-7f
		_	<pre>plt.xticks(range(1,20))</pre>		

I. The review of lecture of "Analyze population life expectancy based on Big Data"

(1) Project background introduction

Many countries regard the life expectancy of the population as an important index of expectancy, while increasing life expectancy as an important development goal. This project analyzes the factors that affect the life expectancy of the population and determines the degree of impact of each influencing factor on the life expectancy of the population in order to find specific ways to increase the life expectancy of the population. At the same time, the population life expectancy is predicted, and its trend of change is explored.

(2) Data cleaning

- a. Treatment of missing values and outliers, as well as corrections for obviously wrong data.
- b. Research the characteristics of data variables

③ Model selection

- a. Principal components regression (PCR)
- b. Ridge regression, and least
- c. Absolute shrinkage and selection operator (lasso) regression

(4) Model comparison

- a. Coefficient of determination
- b. Mean square error
- c. Model simplicity

II. Lecture Content

- 1. Population data with import and clean up
- 2. Correlation check
- 3. Select the corresponding model according to the data characteristics
- 4. Lecture summary

III . Lecturer

School of Silicon Valley Artisan of USJ Instructor: Yuting

(Master of Statistics from San Jose State University, proficient in Python, currently working in Gosvea, Inc Big Data Analysis group)

IV. Organizer

USJ SVA

.....

Scan QR code to follow us

USJEdu Group